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Abstract. In this paper, we study the complexity of solving hard knapsack problems, especially
knapsacks with a density close to 1 where lattice based low density attacks are not an option. For
such knapsacks, the current state-of-the-art is a 28-year old algorithm by Shamir and Schroeppel
which is based on birthday paradox techniques and yields a running time of Õ(2n/2) for knapsacks
of n elements and uses Õ(2n/4). We propose here several algorithms which improve on this bound,
finally lowering the running time down to Õ(20.311n), while keeping the memory requirements
reasonably low at Õ(20.256n). We also demonstrate the practicability of our algorithms with an
implementation.

1 Introduction

The knapsack problem is a famous NP-hard problem which has often been used in the con-
struction of cryptosystems. An instance of this problem consists of a list of n positive integers
(a1, a2, · · · , an) together with another positive integer S. Given an instance, there exist two
form of knapsack problems. The first form is the decision knapsack problem, where we need
to decide whether S can be written as:

S =
n∑
i=1

εiai,

with values of εi in {0, 1}. The second form is the computational knapsack problem where we
need to recover a solution ε if at least one exists.

The decision knapsack problem is NP-complete (see [5]). It is also well-known that given
access to an oracle that solves the decision problem, it easy to solve the computational problem
with n oracle calls. Indeed, assuming that the original knapsack admits a solution, we can easily
obtain the value of εn by asking to the oracle whether the subknapsack (a1, a2, · · · , an−1) can
sum to S. If so, there exists a solution with εn = 0, otherwise, a solution necessarily has εn = 1.
Repeating this idea, we obtain the bits of ε one at a time.

Knapsack problems were introduced in cryptography by Merkle and Hellman [12] in 1978.
The basic idea behind the Merkle-Hellman public key cryptosystem is to hide an easy knapsack
instance into a hard looking one. The scheme was broken by Shamir [16] using lattice reduction.
After that, many other knapsack based cryptosystems were also broken using lattice reduction.
In particular, the low-density attacks introduced by Lagarias and Odlyzko [9] and improved
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by Coster et al. [3] are a tool of choice for breaking many knapsack based cryptosystems.
The density of a knapsack is defined as: d = n/maxi ai. Asymptotically, random knapsacks
with density higher than 1 are not interesting for encryption, because admissible values S
correspond to many possibilities for ε. For this reason, knapsacks with density lower than 1
are usually considered. The Lagarias-Odlyzko low-density attack can solve random knapsack
problem with density d < 0.64 given access to an oracle that solves the shortest vector problem
(SVP) in lattices. Of course, since Ajtai showed in [1] that the SVP is NP-hard for randomized
reduction, such an oracle is not available. However, in practice, low-density attacks have been
shown to work very well when the SVP oracle is replaced by existing lattice reduction algorithm
such as LLL3 [10] or the BKZ algorithm of Schnorr [13]. The attack of [3] improves the low
density condition to d < 0.94.

However, for knapsacks with density close to 1, there is no effective lattice based solution
to the knapsack problem. In this case, the state-of-the-art algorithm is due to Shamir and
Schroeppel [14] and runs in time O(n · 2n/2) using O(n · 2n/4) bits of memory. This algorithm
has the same running time as a basic birthday based algorithm on the knapsack problem
but much lower memory requirement. To simplify the notation of the complexities in the
sequel, we extensively use the soft-Oh notation. Namely, Õ(g(n)) is used as a shorthand for
O(g(n) · log(g(n))i), for any fixed value of i. With this notation, the algorithm of Shamir and
Schroeppel runs in time Õ(2n/2) using Õ(2n/4) bits of memory.

In this paper, we introduce new algorithms that improve upon the algorithm of Shamir
and Schroeppel to solve knapsack problems. The paper is organized as follows: in Section 2
we recall the algorithm of Shamir and Schroeppel, in Section 3 we present the new algorithms
and in Section 4 we describe practical implementations on a knapsack with n = 96. Section 3
is divided into 4 subsections, in 3.1 we describe the basic idea that underlies our algorithm,
in 3.2 we present a simplified version, in 3.3 we present an improved version and in 3.4 we
describe our most complete algorithm. Finally, in Section 5 we present several extensions and
some possible applications of our new algorithms.

2 Shamir and Schroeppel algorithm

The algorithm of Shamir and Schroeppel was introduced in [14]. It allows to solve a generic
integer knapsack problem on n-elements in time Õ(2n/2) using a memory of size Õ(2n/4). To
understand this algorithm, it is useful to first recall the basic birthday algorithm that can
be applied on such a knapsack. For simplicity of exposition, we assume that n is a multiple
of 4. Let a1, . . . , an denote the elements in the knapsack and S be the target sum. We first
construct the set S(1) containing all possible sums of the first n/2 elements (from a1 to an/2)
and S(2) be the set obtained by subtracting from the target S any of the possible sums of the
last n/2 elements. It is clear that any collision between S(1) and S(2) can be written as:

n/2∑
i=1

εi ai = S −
n∑

i=n/2+1

εi ai,

3 LLL stands for Lenstra-Lenstra-Lovász and BKZ for blockwise Korkine-Zolotarev
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where all the εs are 0 or 1. Such an equality of course yields S =
∑n

i=1 εi ai, a solution of the
knapsack problem.

Conversely, any solution corresponds to a collision of this form. With the basic algorithm,
in order to find all collisions, we can, for example, sort both sets S(1) and S(2) and read them
simultaneously in increasing order.

The basic remark behind the Shamir and Schroeppel algorithm is that, in order to enu-
merate S(1) and S(2) by increasing order, it is not necessary to store both sets. Instead, they
propose a method that allows to enumerate the set using a much smaller amount of memory.
Clearly, there is a nice symmetry between S(1) and S(2), thus it suffices to show how S(1) can
be enumerated. Shamir and Schroeppel start by constructing two smaller sets. The first such
set S(1)

L contains all sums obtained by combining the leftmost elements a1 to an/4. The second
set S(1)

R contains all sums of an/4+1 to an/2. Clearly, any element from S(1) can be decomposed

as a sum of an element from S(1)
L and an element from S(1)

R . With these decompositions, some
partial information about the respective order of elements is known a priori. Indeed, when σL
is in S(1)

L , σR and σ′R are in S(1)
R , then σL + σR < σL + σ′R, if and only if, σR < σ′R.

To use this partial information, Shamir and Schroeppel first sort S(1)
L and S(1)

R . Then they
initialize a sorted list of sums by adding to each element of S(1)

L the smallest element in S(1)
R .

Once this is done, their enumeration process works as follows: at each step, they take the
smallest element in the list of sums and output it. Then, they update the sum and put back
in the sorted list of sums at its new correct place. To update the sum, it suffices to keep the
element from S(1)

L unchanged and to replace the element of S(1)
R by its immediate successor.

The main difficulty with this algorithm is that, in order to obtain the overall smallest
current sum at each step of the algorithm, one needs to keep the list of sums sorted throughout
the algorithm. Of course, it would be possible to sort after each insertion, but that would yield
a very inefficient algorithm. Thankfully, by using sophisticated data structure such as balanced
trees also called AVL trees, after their inventors Adelson-Velsky and Landis, it is possible to
store a sorted list of elements in a way that fits our needs. Indeed, these structures allow to
maintain a sorted list where insertions and deletions can be performed in time logarithmic in
the size of the list.

Since S(1)
L and S(1)

R have size 2n/4, so does the sorted list of sums. As a consequence, Shamir
and Schroeppel algorithm runs in time Õ(2n/2) like the basic birthday algorithm but only use
a memory of size Õ(2n/4).

2.1 Application to unbalanced knapsacks

With ordinary knapsacks, where no a priori information is known about the number of elements
that appear in the decomposition of S, the various sets S(1), S(2), S(1)

L and S(1)
R are easy

to define and everything works out well. With unbalanced knapsacks, we know that S is
the sum of exactly ` elements and we say that the knapsack has weight `. If ` = n/2, the
easiest theoretical solution is to ignore the information, because asymptotically it does not
significantly help to solve the problem. However, even in this case, the additional information
can significatively speed-up implementation. For the moment, we stick with an asymptotic
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analysis and we assume, without loss of generality4 that ` < n/2. For simplicity of exposition,
we also assume that ` is a multiple of 4.

In this context, it seems natural to define S(1) as the sum of all subsets of cardinality `/2
of the first n/2 knapsack elements a1 to an/2. However, if the correct solution is not perfectly
balanced by the two halves (or between the four quarters), it will be missed. For example, a
solution involving `/2 + 1 element for the first half and `/2 − 1 from the second half cannot
be detected. To avoid this problem, Shallue proposed in [15] to repeat the algorithm several
times, randomizing the order of the ais each time. The number of orders which lead to a correct
decomposition of the solution into four quarter of size `/4 is:(

`

`/4 `/4 `/4 `/4

)
·
(

n− `
(n− `)/4 (n− `)/4 (n− `)/4 (n− `)/4

)
.

And the total number of possible splits into four quarter is
(

n
n/4 n/4 n/4 n/4

)
. Using Stirling’s

formula, we find that the fraction of correct orders is polynomial in n and `. As a consequence,
we only need to repeat the algorithm polynomially many times.

Assuming that ` is written as αn we obtain an algorithm with time complexity Õ(
(n/2
`/2

)
)

and memory complexity Õ(
(n/4
`/4

)
). Expressed in terms of α and n, the time complexity is

Õ(T nα ) and the memory complexity Õ(Mn
α), where:

Tα =
(

1
αα · (1− α)1−α

)1/2

and Mα =
(

1
αα · (1− α)1−α

)1/4

.

2.2 A more practical version of Shamir and Schroeppel algorithm

In practical implementations, the need to use balanced trees or similar data structures is
cumbersome. As a consequence, we would like to avoid this altogether. In order to do this, we
can use a variation of an algorithm presented in [2] to solve the problem of finding 4 elements
from 4 distinct lists with bitwise sum equal to 0.

Let us start by describing this variation for an ordinary knapsack, with no auxilliary in-
formation about the number of knapsack elements appearing in the decomposition of S. We
start by choosing a number M near 2n/4. We define S(1), S(2), S(1)

L and S(1)
R as previously. We

also define S(2)
L and S(2)

R in the obvious manner. With these notations, solving the knapsack
problem amounts to finding four elements σ(1)

L , σ(1)
R , σ(2)

L and σ
(2)
R in the corresponding sets

such that:

S = σ
(1)
L + σ

(1)
R + σ

(2)
L + σ

(2)
R .

This implies that: σ
(1)
L + σ

(1)
R ≡ S −σ

(2)
L − σ

(2)
R (mod M).

Let σM denote this common middle value modulo M . Since these value is not known, the
algorithm successively tries each of the M possibilities for σM .
4 Indeed, if ` > n/2, it suffices to replace S by S′ =

Pn
i=1 ai − S and to solve this complementary knapsack

which has ` < n/2.
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For each trial value of σM , we then construct the set of all sums σ(1)
L + σ

(1)
R congruent

to σM modulo M . This is easily done is we sort the set S(1)
R by ascending (or descending)

values modulo M . Indeed, in this case, it suffices for each σ
(1)
L in S(1)

L to search the value
σM − σ(1)

L in S(1)
R . With this method, building the intermediate set for a given value of σM

costs Õ(max(|S(1)
L |, |S

(1)
R |, |S

(1)
L | · |S

(1)
R |/M) = Õ(2n/4). We proceed similarly to construct the

sums σ(2)
L + σ

(2)
R congruent to S − σM modulo M . The solution(s) to the knapsack problem

are found by finding collisions between these lists of reduced size.
Taking into account the loop on σM , we obtain an algorithm with time complexity Õ(2n/2)

and memory complexity Õ(2n/4). The same idea can also be used for unbalanced knapsacks,
yielding the same time and memory complexities as in Section 2.1.

A high bit version. Instead of using modular values to classify the values σ(1)
L + σ

(1)
R and

S − σ(2)
L − σ

(2)
R , another option is to look at the value of the n/4 higher bits. Depending on

the precise context, this option might be more practical than the modular version. In the
implementation presented in Section 4, we make use of both versions.

3 The new algorithms

3.1 Basic principle

In this section, we assume that we want to solve a generic knapsack problem on n-elements,
where n is a multiple of 4. We start from the basic knapsack equation:

S =
n∑
i=1

εiai.

For simplicity of exposition5, we also assume that
∑n

i=1 εi = n/2, i.e., that S is a sum of
precisely n/2 knapsack elements.

We define the set Sn/4 as the set of all partials sums of n/4 knapsack elements. Clearly,
there exists pairs (σ1, σ2) of elements of Sn/4 such that S = σ1 + σ2. In fact, there exist
many such pairs, corresponding to all the possible decompositions of the set of n/2 elements
appearing in S into two subsets of size n/4. The number of such decompositions is given by
the binomial

(n/2
n/4

)
.

The basic idea that underlies all algorithms presented in this paper is to focus on a small
part on Sn/4, in order to discover one of these many solutions. We start by choosing an integer
M near

(n/2
n/4

)
and a random element R modulo M . With some constant probability, there exists

a decomposition of S into σ1 + σ2, such that σ1 ≡ R (mod M) and σ2 ≡ S −R (mod M). To
find such a decomposition, it suffices to construct the two subsets of Sn/4 containing elements

5 When the number of elements in the sum is not precisely n/2, we may (by running the algorithm on S andP
i ai − S) assume that is at most n/2. In this case, it suffices to replace Sn/4 by the set of partial sums of

at most n/4 elements.
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respectively congruent to R and S −R modulo M . The expected size of each these subsets is:(
n
n/4

)
M

≈

(
n
n/4

)(n/2
n/4

) ≈ 20.311n.

Once these two subsets S(1)
n/4 and S(2)

n/4 are constructed, we need to find a collision between σ1

and S − σ2, with σ1 in S(1)
n/4 and σ2 in S(2)

n/4. Clearly, using a classical sort and match method,

this can be done in time Õ(20.311n).
As a consequence, we can hope to construct an algorithm with overall complexity Õ(20.311n)

for solving generic knapsacks, assuming that we can construct the sets S(1)
n/4 and S(2)

n/4 quickly
enough. The rest of this paper shows how this can be achieved and also tries to minimize the
required amount of memory.

Application to unbalanced knapsacks. Clearly, the same idea can be applied to unbalanced
knapsack involving ` = αn elements in the decomposition of S. In that case, S can be split
into two parts, in approximately 2αn ways. The involved set of partial sums, now is S`/2 and
we can restrict ourselves to subsets of size near:(

n
`/2

)(
`
`/2

) ≈ ( 2
αα/2 · (2− α)(2−α)/2

)n
· 2−αn.

However, contrarily to what we have in Section 2.1, here it is better to assume that ` > n/2.
Indeed, when α > 1/2 it is possible to decompose S into a much larger number of ways and
obtain a better complexity. Alternatively, in order to preserve the convention α ≤ 1/2, we can
rewrite the expected complexity as:(

n
`/2

)(
n−`

n/2−`/2
) ≈ ( 2

(1− α)(1−α)/2 · (1 + α)(1+α)/2

)n
· 2(α−1)n.

3.2 First algorithm

We first present a reasonably simple algorithm, which achieves running time Õ(20.420n) using
Õ(20.210n) memory units. For simplicity of exposition, we need to assume here that n is a
multiple of 32. Instead of considering decompositions of S into two sub-sums, we consider
decompositions into four parts and write:

S = σ1 + σ2 + σ3 + σ4,

where each σi belongs to the set Sn/8 of all partials sums of n/8 knapsack elements. The
number of such decompositions is given by the multinomial:(

n/2
n/8 n/8 n/8 n/8

)
=

(n/2)!
(n/8)!4

≈ 2n.
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We now choose an integer M near 2n/3 and three random elements R1, R2 and R3 modulo
M . With some constant probability, there exists a decomposition of S into σ1+σ2+σ3+σ4, such
that σ1 ≡ R1 (mod M), σ2 ≡ R2 (mod M), σ3 ≡ R3 (mod M) and σ4 ≡ S − R1 − R2 − R3

(mod M). To find such a decomposition, we start by constructing the four subsets of Sn/8
containing elements respectively congruent to R1, R2, R3 and S − R1 − R2 − R3 modulo M .
We denote these subsets by S(1)

n/8, S(2)
n/8, S(3)

n/8 and S(4)
n/8.

Constructing the subsets. To construct each of the subsets S(1)
n/8, S(2)

n/8, S(3)
n/8 and S(4)

n/8, we can use
the unbalanced version of the practical version of Shamir-Schroeppel algorithm as described
in Section 2.2. Each subset is obtained by computing the sums of four elements, each of these
elements being a sum of n/32 among n/4. The lists that contain these elements are of size( n/4
n/32

)
≈ 20.136n.

However, there is a small difficulty that appears at that point. Indeed, we wish to construct
elements that satisfy a modular constraint, for example each σ1 in S(1)

n/8 should be congruent
to R1 modulo M . This differs from the description of Shamir-Schroepel algorithm and its
variation, which consider exact sums of the ring of integer. Thankfully, assuming that all
values modulo M are represented by an integer in the range [0,M [, a sum of four values that
is congruent to R1 modulo M is necessarily equal to R1, R1 +M , R1 + 2M or R1 + 3M . As a
consequence, by running four consecutive instances of the Shamir-Schroeppel algorithm, it is
possible to construct each of the sets S(i)

n/8 using time Õ(20.272n) and memory Õ(20.136n). Both
the time and memory requirements of this stage are negligible compared to the complexity of
the final stage.

Recovering the desired solution. Once the subsets S(1)
n/8, S(2)

n/8, S(3)
n/8 and S(4)

n/8 have been con-
structed, it suffices to directly apply the final phase of Shamir and Schroeppel algorithm,
preferably using the practical version of Section 2.2. This allows us to find any existing colli-
sion between these two lists of values. The expected decomposition of S into σ1 +σ2 +σ3 +σ4

is clearly obtained as a collision of this form.
As usual with Shamir and Schroeppel algorithm, with lists of size N , the complexity of

this phase is Õ(N2) and the memory requirement Õ(N). For this particular application, we
have:

N ≈

(
n
n/8

)
M

≈ 20.544n

2n/3
≈ 20.210n.

Finally, since this phase dominates the complexity, we conclude that the overall complexity
of our first algorithm is Õ(20.420n), using Õ(20.210n) memory units.

Complexity for unbalanced knapsacks. This algorithm can easily by extended to unbalanced
knapsacks of weigth `. Writing ` = αn, we find that the number of different decompositions
of the sought after solution is:(

`

`/4 `/4 `/4 `/4

)
=

` !
(`/4)!4

≈ 4αn.
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We thus choose Mα ≈ 4αn/3. During the construction of the subsets S(i)
`/4, we take sums from

elements make from `/16 elements among n/4. They have size:

N (0)
α =

(
n/4
`/16

)
≈

(
41/4

(αα · (4− α)4−α)1/16

)n
.

The time and memory complexities of the construction phase are Õ(N (0)
α

2
) and Õ(N (0)

α ).
During the recovery phase, we have sets of size:

Nα ≈

(
n
`/4

)
Mα

≈

(
4

αα/4 · (4− α)(4−α)/4 · 22α/3

)n
.

Thus, we obtain an algorithm with time complexity Õ(N2
α) and memory complexity Õ(Nα).

Indeed, for any value of α in the range ]0, 1/2], we have Nα > N
(0)
α .

3.3 An improved algorithm

In this section, we modify the simplified algorithm in order to improve it and be closer to the
expected Õ(20.311n) from Section 3.1, without increasing the memory complexity too much.
In order to do this, we start by relaxing the constraints on the sets S(1)

n/8, S(2)
n/8, S(3)

n/8 and

S(4)
n/8. More precisely, instead of prescribing there values modulo a number M near 2n/3, we

now choose a smaller M near 2βn, with β < 1/3. As a consequence, we now expect 2(1−3β)n

different four-tuples (σ1, σ2, σ3, σ4) in S(1)
n/8 ×S

(2)
n/8 ×S

(3)
n/8 ×S

(4)
n/8, with sum equal to the target

S.
Clearly, this change does not modify the size of the smaller lists used to constuct the sets

S(i)
n/8. Thus, the memory complexity of the construction step remains unchanged. However,

the time complexity of this phase may become higher. Indeed the resulting sets S(i)
n/8 can now

be much larger. The sets have size
(
n
n/8

)
· 2−βn ≈ 2(0.544−β)n. As a consequence, the time

complexity becomes Õ(max(2(0.544−β)n, 20.272n)).
Once the sets S(1)

n/8, S(2)
n/8, S(3)

n/8 and S(4)
n/8 have been constructed, we again need to run

Shamir-Schroeppel method. We have four list of size Õ(2(0.544−β)n), thus one might expect a
time proportional to the square of the lists size. However, recalling that the sets contain about
2(1−3β)n solutions to the system, it suffices to run Shamir-Schroeppel on a fraction of the middle
values to reach a solution. This fraction is approximately 2(3β−1)n. As a consequence, we obtain
an algorithm that runs in time Õ(max(2(0.088+β)n, 2(0.544−β)n, 20.272n)) using Õ(2(0.544−β)n)
units of memory.

We can minimize the time by taking β ≈ 0.228 and obtain an algorithm with time complex-
ity Õ(20.315n) and memory complexity Õ(20.315n). Of course, different time-memory tradeoffs
are also possible for this algorithm. More precisely, for any 0.228 ≤ β ≤ 1/3 we obtain a dif-
ferent tradeoff. If we let Tβ and Mβ denote the corresponding time and memory complexity,
the key property is that the product Tβ ·Mβ remains constant as β varies in the above stated
range.



9

Complexity for unbalanced knapsacks. As before, this algorithm can easily by extended to
unbalanced knapsacks of weigth `. Again writing ` = αn and taking Mα near 2β n, we obtain
new sizes for the involved sets. As previously, we have:

N (0)
α =

(
n/4
`/16

)
≈

(
41/4

(αα · (4− α)4−α)1/16

)n
.

Moreover, completing our previous notations by the parameter 0 ≤ β ≤ 2α/3, we find that:

Nα,β ≈

(
n
`/4

)
Mα

≈

(
4

αα/4 · (4− α)(4−α)/4 · 2β

)n
.

The time complexity now is Õ(max(N (0)2, Nα,β, N
2
α,β · 2(3β−2α)n) and the memory complexity

becomes Õ(Nα,β), assuming Nα,β ≥ N (0) which holds for any reasonable choice of parameters.
In particular, we can minimize the running time by choosing:

β = max

(
0, α− 1

2
log2

(
4

αα/4 · (4− α)(4−α)/4

))

With this choice, the time complexity is Õ(2Cαn) and the memory complexity Õ(2Cαn)),
where:

Cα = max

(
3
2

log2

(
4

αα/4 · (4− α)(4−α)/4

)
− α, 2 log2

(
4

αα/4 · (4− α)(4−α)/4

)
− 2α

)
.

Of course, as in the balanced case, different time-memory tradeoffs are also possible.

Knapsacks with multiple solutions. Note that nothing prevents the above algorithm finding
a large fraction of the solutions for knapsacks with many solutions. However, in that case,
we need to take some additional precautions. First, we must take care to remove duplicate
solutions when they occur. Second, we should remember that, if the number of solutions is
extremely large it can become the dominating factor of the time complexity.

It is also important to remark that, for an application that would require all the solutions
of the knapsack, it would be necessary to increase the running time. The reason is that this
algorithm is probabilistic and that the probability of missing any given solution decreases
exponentially as a function of the running time. Of course, when there is a large number Nsol
of solutions, the probability of missing at least one is multiplied by Nsol. To balance this, we
need to increase the running time by a factor of log(Nsol).

3.4 A complete algorithm for the balanced case

Despite the fact that the algorithms from Sections 3.2 and 3.3 outperform Shamir-Schroeppel
method, they do not achieve the complexity expected from Section 3.1. The algorithm from
Section 3.3 comes close but it requires more memory than we would expect.
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In order to further reduce the complexity, we need to follow more closely the basic idea
from Section 3.3. More precisely, we need to write S = σ1 + σ2 and constrain σ1 enough to
lower the number of expected solutions to 1. Once again, we assume, for simplicity, that S is
a sum of exactly n/2 elements of the knapsacks.

Of course, this can be achieved by keeping one solution out of 2n/2. One option would be
to choose a modulus M close to 2n/2 and fix some random value for σ1. However, in order to
have more flexibility, we choose γ ≥ 1/2, consider a larger modulus M close to 2γn and allow
2(γ−1/2)n different random values for σ1.

For each of these 2(γ−1/2)n random values, say R, we need to compute the list of all solutions
to the partial knapsack σ1 = R (mod M), the list of all solutions to σ2 = S − R (mod M)
and finally to search for a collision between the complete integer values of σ1 and S − σ2.

Clearly, the list of values σ1 (or σ2) can be constructed by solving a modular knapsack
problem involving about n/4 values chosen among n. With the usual idea of randomizing
the order of knapsack elements and running the algorithm several times, we may assume
that σ1 is the sum of precisely n/4 values. Thus, we can obtain the list of all σ1 values by
running an integer knapsack algorithm n/4 times, for each of the following targets: R, R+M ,
R + 2M , . . . , R + (n/4 − 1)M . Using the algorithm from Section 3.3 with α = 1/4 and the
corresponding choice β ≈ 0.081, this can be done using memory Õ(20.256n). Since the number of
expected solutions is Õ(2(0.811−γ)n), the running time is Õ(max(20.256n, 2(0.811−γ)n)). Choosing
γ ≈ 0.555, we balance the memory and running time of the subroutine (resp. Õ(20.256n) and
Õ(20.256n)).

The total running time is obtained by multiplying the time of the subroutine by the number
of consecutive runs, i.e. 2(γ−1/2)n. As a consequence, the complete algorithm runs using time
Õ(20.311n) and memory Õ(20.256n). In terms of memory, this is just slightly worse than Shamir-
Schroeppel.

Unbalanced knapsacks. Note that this algorithm does not behave well for unbalanced knap-
sacks. At the time of writing, we have not been able to find a generalization for unbalanced
knapsacks that achieves the expected running time and remains good in terms of memory.

4 A practical experiment

In order to make sure that our new algorithms perform well in practice, we have benchmarked
their performance by using a typical hard knapsack problem. We constructed it using 96
random elements of 96 bits each and then built the target S as the sum of 48 of these elements.
For this knapsack instance, we now compare the performance of Shamir-Schroeppel (practical
version), of the algorithm6 from Section 3.3 .

Shamir-Schroeppel algorithm. Concerning the implementation of Shamir-Schroeppel algorithm,
we need to distinguish between two cases. Either we are given a good decomposition of the set
of indices into four quarters, each containing half zeroes and half ones, or we are not. In the

6 We skip the algorithm from Section 3.2 because the program is identical to the algorithm of Section 3.3 and
relies on different less efficient parameters.
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first case, we can reduce the size of the initial small lists to
(
24
12

)
= 2 704 156. In second case,

two options are possible: we can run the previous approach on randomized decompositions
until a good is found, which requires about 120 executions; or we can start from small lists of
size 224 = 16 777 216.

For the first case, we used the variation of Shamir-Schroeppel presented in Section 2.2 with
a prime modulus M = 2 704 157. For lack of time, we could not run the algorithm completely.
From the performance obtained by running on a subset of the possible values modulo M , we
estimate the total running time to 37 days one a single Intel core 2 duo at 2.66 Ghz. For the
second case, it turns out that, despite higher memory requirements, the second option is the
faster one and would require about 1 500 days on the same machine (instead of the 4 400 days
for the first option).

In our implementation of Shamir-Schroeppel algorithm, in order to optimize both the
running time and the memory usage, we store the sets S(1), S(2), S(1)

L and S(1)
R without keeping

track of the decomposition of their elements into a sum of knapsack elements. This means
that the program detects correct middle values modulo M but cannot recover the knapsack
decomposition immediately. Instead, we need to rerun a version that stores the full description
on the correct middle values. All in all, this trick allows our program to run twice faster and
to use only 300 Mbytes of memory with initial lists of size

(
24
12

)
and 1.8 Gbytes with initial

lists of size 224.

Our improved algorithm. As with the Shamir-Schroeppel algorithm, we need to distinguish
between two cases, depending whether or not a good decomposition into four balanced quarters
is initially known. When it is the case, our implementation recovers the correct solution in
slightly less than an hour on the same computer. When such a decomposition is not known
in advance, we use the same approach on randomized decompositions and find a solution in
about 5 days. The parameters we use in the implementation are the following:

– For the main modulus that define the random values R1, R2 and R3, we take M =
1 200 007.

– Concerning the Shamir-Schroeppel subalgorithms, we need to assemble four elements com-
ing from small lists of 2 024 elements, that sum to one of the four specified values modulo
M , i.e. to R1, R2, R3 or S − R1 − R2 − R3. We use a variation of Shamir-Schroeppel
that works on the 12 highest bits of the middle value. The resulting lists have size near
14 000 000

– For the final merging of the four obtained lists, we use a modular version of Shamir-
Schroeppel algorithm with modulus 2 000 003.

In this implementation, we cannot use the same trick as in Shamir-Schroeppel and forgot
the description of each element into a sum of knapsack elements. Indeed, each we merge
two elements together, it is important to check that they do not share a common knapsack
element. Otherwise, we obtain many fake decompositions of the target, which greatly lower
the performance of the program. All in all, the program uses approximately 2.7 Gbytes of
memory.
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Our complete algorithm. Before giving detailed parameters and running times, we would like
to mention that in out implementation, the small lists that occur are so small that we replaced
the innermost Shamir-Schroeppel algorithm running each small knapsack (of weight 6 in 96)
by a basic birthday paradox method. One consequence of this is that we not longer need a
decomposition of the knapsack into four balanced quarters. Instead, two balanced halves are
enough. This means that when such a decomposition is not given, we only need to run the
algorithm an average of 6.2 times to find a correct decomposition. The parameters we use in
the implementation are the following:

– For the main modulus that define the random value R we take M = (223 +9) ·1009 ·50 021.
– Concerning the two subinstances of the improved algorithm that appear within the com-

plete algorithm, we define the value R1, R2, R3 modulo 50 021. As a consequence, the
innermost birthday paradox method is matching values modulo 50 021.

– The assembling phase of the two subinstances uses the modulus 1009 to define its middle
values.

This specific choice of having a composite values for M whose factors are used in the two
instances of the improved algorithm allowed us to factor a large part of the computations
involved in these two subinstances. In particular, we were able to use the same values of R1,
R2, R3 and S′ − R1 − R2 − R3 for both instances by choosing only values of R such that
R = S −R modulo 1009 · 50 021. We also take care to optimize the running time each trial by
halting the subalgorithms early enough to prevent them from producing the same solutions
too many times. This lowers the probability of success of individual trails but improves the
overall running time.

Another noteworthy trick is that, instead of trying all the targets of the form R, R + M ,
R + 2M , . . . , R + (n/4 − 1)M , we only consider a small number of targets around the R +
(n/8)M . Since a sum of n/4 random numbers modulo M as an average of (n/8)M , this does
not lower the probability of success much and gives a nice speedup.

Using these practical tricks, our implementation of the complete algorithm runs rea-
sonnably fast. We have not made enough experiments to get a precise average running time,
however, on two different starting points, it ran once in about 6 hours and once in about 12
hours (on the same processor), given a good decomposition of the knapsack into two halves.
Without this decomposition and taking the higher of the two estimates, it would require about
3 days to find the decomposition. Where memory is concerned, the program uses less than 500
Mbytes.

5 Possible extensions and applications

The algorithmic techniques presented in this paper can be applied to more than ordinary
knapsacks, we give here a list of different problems were the same algorithms can also be used.

Approximate knapsack problems. A first problem we can consider is to find approximate solu-
tions to knapsack problems. More precisely, given a knapsack a1, . . . , an and a target S, we
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try to write:

S =
n∑
i=1

εi ai + δ,

where δ is small, i.e. belongs to the range [−B,B] for a specified bound B.
This problem can be solved by transforming it into a knapsack problem with several targets.

Define a new knapsack b1, . . . , bn where bi is the closest integer to ai/B and let S′ be the
closest integer to S/B. To solve the original problem, it now suffices to find solutions to the new
knapsack, with targets S′−(n/2), . . . , S′+(n/2) when n is even or with targets S′−((n+1)/2),
. . . , S′ + ((n+ 1)/2) when n is odd.

Modular knapsack problems. In the course of developping our algorithms, we have seen that
modular knapsacks can be solved simply by lifting to the integers and using multiple targets.
If the modulus is M and the modular target is T , it suffices to consider the integet targets T ,
T +M , . . . , T + nM .

Vectorial knapsack problems. Another option is to consider knapsacks whose elements are
vectors of integers and where the target is a vector. Without going into the details, it is clear
that this is not going to be a problem for our algorithms. In fact, the decomposition into
separate components can even make things easier. Indeed, if the individual components are
of the right size, they can be use as a replacement for the modular criteria that determine
whether we keep or remove partial sums.

Knapsacks with εi in {−1, 0, 1}. In this case, we can applied similar methods. However, we
obtain different bounds, since the number of different representations of a given solution is
no longer the same. For example, going back to the theoretical bound, a solution with `
coefficients equal to −1 and ` coefficients equal to 1 can be split into two parts each containing
`/2 coefficients of both types in

(
`
`/2

)2
. ways.

In order to show the applicability of our techniques in this case, we recompute the time
complexities of the Shamir-Schroeppel algorithm and of our improved algorithm assuming that
` = α · n. For Shamir-Schroeppel, the time complexity is the same as for the basic birthday
algorithm, i.e, it is equal to:(

n/2
`/2 `/2 (n/2− `)

)
≈
(

1
αα · (1− 2α)(1−2α)/2

)n
.

For the improved algorithm, we need to update the values of our parameters, we first find
that the number of different decomposition of a given solution into 4 parts is:(

`

`/4 `/4 `/4 `/4

)2

≈ 42αn.

We also can recompute:

N (0)
α =

(
n/4

`/16 `/16 (n/4− `/8)

)
≈

(
21/4

((α/2)α · (2− α)2−α)1/8

)n
.
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Moreover, under the assumption that 0 ≤ β ≤ 4α/3, we now define:

Nα,β ≈

(
n

`/4 `/4 (n−`/2)

)
Mα

≈

(
2

(α/2)α/2 · (2− α)(2−α)/2 · 2β

)n
.

The time complexity thus becomes Õ(max(N (0)2, Nα,β, N
2
α,β · 2(3β−4α)n).

Generalized birthday generalization. Since the paper of Wagner [17], it is well-known that
when solving problems involving sums of elements from several lists, it is possible to obtain
a much faster algorithm when a single solution out of many is sought. In some sense, the
algorithms from the present paper are a new developpement of that idea. Indeed, we are
looking for one representation out of many for a given solution. With this restatement, it is
clear that further improvements can be obtained if, in addition, we seek one solution among
many. Putting everything together, we need to seek a single representation among a very
large number obtained by multiplying the number of solutions by the average number of
representations for each solution.

However, note that this approach does not work for all problems where the generalized
birthday paradox can be applied. It can only improve the efficiency when the constraints on
the acceptable solutions are such that allowing multiple representations really add new options.
Indeed, if one does not take care, there is a risk of counting each solution several times.

Combination of the above and possible applications. In fact, it is even possible to address any
combination of the above. As a consequence, this algorithm can be a very useful cryptana-
lytic tool. For example, the NTRU cryptosystem can be seen as an unbalanced, approximate
modular vector knapsack. However, it has been shown in [8] that it is best to attack this cryp-
tosystem by using a mix of lattice reduction and knapsack-like algorithms. As a consequence,
deriving new bounds for attacking NTRU would require a complex analysis, which is out of
scope for the present paper.

In the same vein, Gentry’s fully homomorphic scheme [6], also needs to be studied with
our new algorithm in mind.

Another possible application is the SWIFFT hash function [11]. Indeed, as explained by
the authors, this hash function can be rewritten as a vectorial modular knapsack. Moreover,
searching for a colision on the hash function can be interpreted as a knapsack with coefficients in
{−1, 0, 1}. In [11], the application of generalized birthday algorithms to cryptanalyze SWIFFT
is already studied. It would be interesting to re-evaluated the security of SWIFFT with respect
to our algorithm. In order to show that the attack of [11] based on Wagner’s generalized
birthday algorithm can be improved upon, we give a first improvement in appendix B.

Note that, in all cases, we do not affect the asymptotic security of all the scheme, indeed,
an algorithm with complexity 20.311n remains exponential. However, depending in the initial
designers hypothesis, recommended practical parameters may need to be enlarged. For the
special case of NTRU, it can be seen that in [7] that the estimates are conservative enough
not to be affected by the our algorithms.
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6 Conclusion

In this paper, we have proposed new algorithms to solve the knapsack problem and other
related problems, which improve on the current state of the art. In particular, for the knapsack
problem itself, this improves the 28-year old algorithm of Shamir and Schroeppel and gives
a positive answer to the question posed in the Open Problem Garden [4] about knapsack
problems: “Is there an algorithm that runs in time 2n/3?”. Since our algorithm is probabilistic,
an interesting open problem is to give a fast deterministic algorithm for the same task.
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A Graph of compared complexities

In the following figure, we present the complexity of the algorithms discussed in the paper as
a function of the proportion of 1s in the knapsack. In particular, this graph shows that the
complete algorithm does not well for unbalanced knapsacks.
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B On the security of SWIFFT

Here, we detail the impact of the generalized algorithms of Section 5 on the SWIFFT hash
function. In [11], Section 5.2, paragraph “Generalized Birthday Attack”, this security is as-
sessed by using Wagner’s algorithm on a modular vectorial knapsack with entries {−1, 0, 1}.
This knapsack contains 1024 vectors of 64 elements modulo 257. The principle of the attack
consists in breaking the 1024 vectors into 16 groups of 64 vectors each. For each group, the
attack builds a list of 364 ≈ 2102 different partial sums. Finally Wagner’s algorithm is used on
these lists. This gives an algorithm with time at least 2106 and memory at least 2102.

In order to show that this algorithm can be improved, we give a simplified version of our
algorithms that lowers the time to approximately 299 and the memory to 296. The idea is
to start by building arbitary sums of the 1024 elements with a fraction of theri coordinates
already equal to 0 modulo 257 and with coefficients in {0, 1} instead of {−1, 0, 1}. Any collision
between two such sums yields a collision of SWIFFT. To build the sums, we proceed as in [11]
and split the 1024 vectors into 16 groups of 64 vectors. In each group, we construct the 264

possible sums. Then, we assemble the groups by two forcing 4 coordinates to 0. After this phase,
we obtain 8 lists of approximately 296 elements. We assemble this list by pairs again, forcing 12
coordinates to 0 and obtain 4 lists of approximately 296 elements. After two more assembling,
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we obtain a list of 296 sums with a total of 40 coordinates equal to zero. A simple birthday
paradox argument shows that we can find a collision between the 24 remaining coordinates.
After subtracting the two expressions, we obtain the zero vector as a sum of the 1024 vectors
with {−1, 0, 1} coefficients, i.e. a collision on SWIFFT.

A more detailed analysis of the parameters of SWIFFT is still required to determine
whether the collision attack can still be improved upon.


